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Abstract: To figure out a proper asset pricing factor model among a bunch of candidate 
factors and anomalies has been always a heated field. This paper applies the Bayesian method 
proposed by Barillas and Shanken (2018) to investigate the optimal factor models under a 
more comprehensive collection of candidate factors as well as candidate models. Given a 
collection of 13 candidate nonmarket factors and asset returns data of U.S. stock market from 
1980 to 2018, this paper compares a total of 810 individual models and 64 category models 
under the same prior specification of a maximum Sharp ratio multiple. This paper also ranks 
the candidate individual factors and categorical factors based on their posterior probabilities. 
The results show that the best individual model is the six-factor model {Mkt, UMD, SMB, 
HMLm, ROE IA} and the optimal categorical models is {Mkt SIZE VALUE PROF INV}. 
In addition, factors IA and ROE showcased highest predictive power. The results are robust 
under different prior assumption. 

1. Introduction  

Asset pricing literature has explored various factors since the three-factor model of Fama and French 
(1993) that includes market, size, and value factors. Factors to explain stock excess return are always 
identified firstly by anomalies recognition. Harvey et al. (2016) presented a list of 316 anomalies as 
the potential factors for asset pricing. Fama and French (2015) categorized those anomalies as five 
categories as to Valuation, Size, Investment, Profitability and Momentum. To find more factors to 
explain risk premium, anomalies are broadly utilized to recognize potential factors for asset pricing. 
Based on anomalies analysis, additional factors of Investment, Profitability, Momentum and Reversal 
has been developed and proved to be significantly correlated with stock excess return in asset pricing 
models. Two challenges arose at the same time. One is that how to combine those factors to formulate 
a best model. The other is that which variables are the best proxies with highest predictive power for 
each category factors to make a best prediction. Given a variety of candidate factors which might be 
extended with more anomalies recognized in the future, a satisfactory statistical methodology of 
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identifying the best models and comparing pairwise models is of great significance (Barillas and 
Shanken, 2018).  

Two approaches are available for investigation on these two questions. As for determination of 
proper combination for factors, a classic test to evaluate factor models is to test whether the alphas 
are significant given the implication that market portfolio is efficient. This way to evaluate factor 
models was standardized by Gibbons, Ross and Shanken (1989) by proposing a joint F-test, 
henceforth GRS, based on which the hypothesis is that intercept of models should be zero. Traditional 
statistical method as to select the most effective factors is to use the remain-to-test factor to regress 
on other factors, if the alpha is significantly far away from zero, then this factor should be added into 
the models (Fama and French, 2015, 2016, 2017, 2018). 

However, with more factors to be considered into models are developed and larger data set to be 
tested, GRS suggests "rejection" for hypothesis more often (Fama and French, 2016). Therefore, the 
efficiency of GRS test should be considered again. Barillas and Shanken (2018) proposed that a very 
large p-value may imply more about the imprecision about alpha than the model's accuracy. De Moor 
et al. (2015) suggested that the p-value estimation might be influenced by estimation precision across 
models, which implies that utilization of GRS to compare precision of models would be faced with 
unexpected obstacles.  

Another approach of Bayesian method to test alpha has been proposed firstly by Shanken (1987b). 
Shanken developed a Bayesian test in his paper to evaluate the mean-variance efficiency of a portfolio 
by directly linking the prior belief about relative efficiency to the odds in favour of efficiency. Harvey 
and Zhou (1990) complimented the procedure of Shanken by using both a diffuse prior and an 
informative prior to calculate posterior-odds ratio which therefore can provide a prior belief for all 
parameters, as opposed to Shanken's method which can only impose a prior belief on the function. 
Barillas and Shanken (2018) adopted suggestion of Harvey and Zhou to utilize the diffuse prior and 
derived a Bayesian asset pricing test that requires a prior judgment about the magnitude of plausible 
model deviations. They applied Bayesian test to the model comparison based on a given variety of 
candidate factors proposed by Hou, Xue, and Zhang (2015a, 2015b) and Fama and French (2015, 
2016) and the best model with the highest posterior probability is the six-factor model {Mkt IA ROE 
SMB HMLm UMD}.  

To examine more comprehensively the predictive power of individual factors among same 
categorical factors and to investigate the optimal combination of pricing factors, this paper adopts the 
relative comparison method proposed by Barillas and Shaken (2018) to further test a total of 13 
candidate nonmarket factors and compare 810 candidate models based on U.S. stock market data over 
thirty years period. The rest of paper is organized as follows. The second section presents the 
methodology for calculating the posterior probabilities and comparing models. We conduct the 
Bayesian method on U.S. stock market to compare different individual models and categorical models 
in section three. Section four presents the empirical results. Section five gives the final conclusion. 

2. Methodology 

The empirical application of Bayesian approach lagged behind classical statistical method for many 
years was the result of two critical obstacles facing Bayesian estimation method (Harvey and Zhou, 
1990). One difficulty is how to choose a proper prior distribution, and the other is how to calculate 
posterior distribution. In this section, we introduced in turn the prior specification and posterior 
probabilities for calculating model unconditional probabilities. 

2.1. Prior Specification  

Given a multivariate pricing model 
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r! = α + βf! + ε!, ε!~N(0, Σ)																				(1) 
 

ε! is independent over time. The diffuse prior for β	and	sample	F is  
 

P(β, F) ∝ |Σ|"
#$%
& 																	(2) 

 
We assume that alpha is normally distributed conditional on	β, F 

 
P(α|β, F)~MVN(0, kΣ)																				(3) 

 
where k reflects our prior belief about the extent the alpha correlated with residual variance. In 
addition,   
 

α′CΣ"%αD = sh'()
& − sh& 																(4) 

 
and α′C (kΣ)"%αD is distributed as Chi~Squre with freedom degrees of N. Therefore, given a target 
maximum Sharp ratio multiple, the required k can be calculated with  
 

k = EI	
sh'()

& − sh&

N J 																			(5) 

2.2.Posterior Probabilities 

Posterior probabilities for each model in this paper are utilized to compare models with different 
factors. Given a collection of candidate factors, the (L-1) test nonmarket factors are denoted by f. The 
models with (Mkt, f) are denoted by M. The factors excluded by M is denoted by w∗. For each model 
with prior model probability of PMM+N , the posterior probability conditional on data F is given by  

	

PMM+ODN = QML+ × PMM+NT × UVML, × P(M,)
,

W,																			(6)	

 
where 	ML+ is the marginal likelihoods and F is sample for all factors and assets returns. The ML is 
given by 

 
ML = ML-(f|Mkt) × ML.(f ∗|Mkt, f) × ML.(r|Mkt, f, f ∗)																						(7)	

 
Marginal likelihoods of model M conditional on w: 
 

ML(M|w) = ML-(f|Mkt) × ML.(f ∗|Mkt, f) × ML.(r|Mkt, f, f ∗)																						(8) 
 
M|w refers to uniform prior over models in w. Unconditional probability of data: 
 

P(F) = E/{ML(w)}																					(9) 
 
By averaging ML(w) over uniform prior P(w). The posterior probability for w is: 
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P(w|F) = ML(w) ×
P(w)
P(F) 																		(10) 

 
Combine the above functions, we get: 
 

		P(M|F) =V 𝑃(𝑤|𝐹) × 𝑃(𝑀|𝑤, 𝐹)
0

 

=V {𝑀𝐿(𝑤) × 𝑃(𝑤)/𝑃(𝐹)} × 𝑃(𝑀|𝑤, 𝐹)
0

 

=V
𝑀𝐿(𝑤)

∑ 𝑀𝐿(𝑤)0
×

𝑀𝐿
∑ 𝑀𝐿00

 

    (11)	
 

 
Where 
 

ML = ML-(f|Mkt) × ML.(f ∗|Mkt, f)																			(12) 
 

Therefore, ∑ P(M|F)1 = 1, this means that the probabilities for a total of test asset pricing models 
under the same prior specification would sum up to one.  

3. Comparing Models with Categorical Factors  

Barillas and Shanken (2018) refers category factors to the factors that include more than one 
measurement opposed to standard factors that only have one measurement. The models with category 
factors are category models opposed to individual models that only consider individual factors. For 
example, for Value factor, there are two measurements of HML and HMLm (Asness and Frazzini, 
2013) to calculate Value. A bunch of test models can be formulated by the combination between 
category factors and individual factors. We consider a total of 14 candidate factors including one 
market factor and 13 non-market factors which can be categorized into five categories. For Size, we 
consider SMB and ME (Hou, Xue, and Zhang, 2015a); for Value, we consider HMLm (Asness and 
Frazzini, 2013) and three types of HML  constructed respectively by B/M, E/P and CF/P; for 
Profitability, we consider RMW and ROE; for Investment, we consider CMA and IA; for Reversal, 
we consider LR (long-term reversal factor) and SR (short-term reversal factor). We also consider the 
standard momentum factor of UMD. We construct factors in a way similar to Fama and French 
(2015). This paper creates each factor by interacting them with size based on 2X3 sorts of portfolio. 
For example, HML is constructed by interacting size with value to create a 2X3 portfolio and HML 
is the average of two high-value portfolios returns minus the average of two low-value portfolio 
returns; RMW is the average of two high-profitability portfolio returns minus two low-profitability 
portfolio returns; the same construction method goes to the rest of factors respectively.  

In all, we consider two standard factor of Mkt and UMD, and five categorical factors of Size, 
Value, Profitability, Investment and Reversal. Since each model has up to seven factors and Mkt is 
always included, a total of 64 categorical models can be formulated. Consider each categorical model 
can adjust their categorical factors; therefore, we have a total of 810 individual models. Our 
benchmark of prior specification assumes that maximum Sharp ratio equals 1.5 times market sharp 
ratio. 

54



 

4. Empirical Results 

In this section, we present the result of model comparison for the sample period from 1980 to 2019. 
Model probabilities are shown at each point in time to provide a historical perspective on how 
posterior beliefs of model have evolved over time. Therefore, we use monthly data from January 1980 
up to the given point of time to estimates unconditional probabilities for each model. The 
unconditional probabilities for each model are presented in the figure1. Since we test up to 810 models 
for each period of sample, the sum of unconditional probabilities for all test models equals one, each 
model therefore finally got a very low probability. However, the empirical result can still rank out the 
fit model with the highest unconditional probability.  

 
Figure 1: Individual Model Probabilities and Categorical Model Probabilities. 

Under the prior belief that maximum sharp ratio is 1.5 times market sharp ratio, the best two 
models with highest unconditional probability is a six-factor model with{Mkt, UMD, SMB, HMLm, 
ROE IA} and a four-factor model with {Mkt, SMB, ROE IA} which excludes value categorical factor 
and momentum categorical factor compared to the six-factor model. The above two models stand out 
with a much higher probability than the other models. These two models have no significant 
difference since 2010, while the six-factor model beat the four-factor model with a much higher 
probability from 2003 to 2009. The remaining five models of top seven are one four-factor model 
with {Mkt, SMB, ROE, IA}, one three-factor model with {Mkt, ROE, CMA}, one five-factor model 
with {Mkt, UMD, HMLm, ROE, IA}, and two six factor models with {Mkt, UMD, SMB, HMLm, 
ROE, CMA} and {Mkt, UMD, ME, HMLm, ROE, IA} respectively. Among the best seven models, 
all include Profitability and Investment categorical factors; for Profitability, all models include ROE; 
for Investment, five of seven include IA; four out of seven models include Value factors and they all 
choose HMLm. All of models don’t include any Reversal factors. The second panel of figure 1 gives 
another perspective on probabilities of categorical models by aggregating posterior probabilities for 
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different versions of each categorical model. The posterior probabilities for categorical models are 
much more stable than that of individual models. Standing at the latest point, the best category model 
is the four factor model with {Mkt, SIZE, VALUE, PROF, INV}, which is closely followed by two 
five factor categorical models each adding REV and UMD respectively.  

Figure 2 present the exploration of factor probabilities. The first panel of figure 2 shows the 
cumulative categorical factor probabilities, that is, the sum of posterior probability of model that 
include this categorical factor. The cumulative probabilities for Profitability and Investment close to 
one, with Size, Value and Reversal around 0.8, respectively, while Momentum only about 0.5. The 
second panel of figure 2 gives cumulative probabilities for each factor. ROE and IA ranked first two 
both with much higher cumulative probabilities than other factors, which corresponds to the model 
ranking showing that all seven models include ROE and five models include IA. Combined with first 
panel of figure 2, we can conclude that categorical factors of Profitability measured as ROE and 
categorical factor Investment measured as IA is significant for explaining pricing model. For Size, the 
probabilities of SMB and ME are close to each other; for Value, HMLm beat over other three factors 
less than 0.3 with a much higher probability; for Reversal, the probability of LR is higher than SR, 
but both of them are lower than 0.3. 

 
Figure 2: Cumulative Factor and Categorical Factor Probabilities. 

The previous analysis is based on the prior assumption that maximum Sharp ratio is 1.5 times 
sample market Sharp ratio. We next examine the sensitivity to the prior Sharp multiples of posterior 
probabilities (in per thousand) for the top seven models under the assumption of Sharp multiples as 
1.5. Table 1 present the result of posterior probabilities under Sharp multiples of 1.25, 1.75 and 2.0 
for the top seven models when prior Sharp multiples is set as 1.5. The best model {Mkt, UMD, SMB, 
HMLm, ROE IA} still ranks highest under different multiples specification. However, the rankings 
of the other six top models changes when Sharp multiples rise to 1.75 and 2. The model {Mkt UMD 
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SMB HML ROE CMA} comes to the second place in opposed to {Mkt SMB ROE IA}. At the same 
time, when multiples increase, the probabilities for models are less spread out. 

Table 1: Prior Sensitivity For Models Probabilities. 

Individual Models 1.25 1.5 1.75 2 
Mkt, UMD, SMB, HMLm, ROE IA 22.82 23.57 30.79 35.21 
Mkt, ROE and IA 22.82 21.79 22.66 24.82 
Mkt, SMB, ROE, IA 16.25 21.62 25.77 29.33 
Mkt, ROE, CMA 20.52 20.52 21.81 24.07 
Mkt, UMD, HMLm, ROE, IA 13.98 19.99 23.03 25.39 
Mkt, UMD, SMB, HMLm, ROE, CMA 10.10 19.79 25.62 29.12 
Mkt, UMD, ME, HMLm, ROE, IA 9.96 18.41 23.21 25.95 

 
The top model rankings for categorical models are also robust across different prior multiple 

specification. The best categorical model {Mkt SIZE VALUE PROF INV} always ranks the first 
under different prior multiples. The probabilities for the best categorical model are also stable with 
different prior Sharp multiples. Among the five top categorical models, {SIZE VALUE PROF INV} 
are included in each model except the fifth which excludes SIZE. The probabilities for categorical 
models with REV but without UMD decline as Sharp multiple rises. While the probabilities for the 
categorical models with UMD but without REV increase as multiple rises. 

Table 2: Prior Sensitivity for Categorical Models Probabilities. 

Categorical Models 1.25 1.5 1.75 2 
Mkt SIZE VALUE PROF INV 15.11 15.50 15.70 15.58 
Mkt SIZE VALUE PROF INV REV 13.92 12.89 11.61 10.46 
Mkt UMD SIZE VALUE PROF INV 6.77 10.55 12.52 13.56 
Mkt UMD SIZE VALUE PROF INV REV 5.80 8.24 8.87 8.84 
Mkt VALUE PROF INV 10.28 7.74 6.88 6.53 

 

5. Conclusions  

This paper applies the method proposed by Barillas (2018) to utilize the Bayesian method to compare 
factor pricing models. Based on the data of American stock market from 1980 to 2019 and given a 
total of 13 nonmarket candidate traded factors, this paper compares 64 categorical models and 810 
individual models based on their unconditional probabilities calculated with Bayesian method. Since 
Bayesian estimation method requires a prior specification, this paper uses Barillas’ method to 
determine a prior specification by setting the expected maximum Sharp ratio multiples. The empirical 
result demonstrates that under the prior specification of 1.5 times Sharp multiple, the best 
performance model is {Mkt, UMD, SMB, HMLm, ROE IA}, the best categorical model is {Mkt 
SIZE VALUE PROF INV}, the unconditional probability rankings of the six categorical factors is: 
PROF, INV, VALUE, SIZE, REV, UMD, and the two individual factors with the highest predictive 
power are IA and ROE. The empirical result is fundamentally stable across different prior 
specification of maximum Sharp multiples. 
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